Allosteric Communication Networks in Proteins Revealed through Pocket Crosstalk Analysis
نویسندگان
چکیده
The detection and characterization of binding pockets and allosteric communication in proteins is crucial for studying biological regulation and performing drug design. Nowadays, ever-longer molecular dynamics (MD) simulations are routinely used to investigate the spatiotemporal evolution of proteins. Yet, there is no computational tool that can automatically detect all the pockets and potential allosteric communication networks along these extended MD simulations. Here, we use a novel and fully automated algorithm that examines pocket formation, dynamics, and allosteric communication embedded in microsecond-long MD simulations of three pharmaceutically relevant proteins, namely, PNP, A2A, and Abl kinase. This dynamic analysis uses pocket crosstalk, defined as the temporal exchange of atoms between adjacent pockets, along the MD trajectories as a fingerprint of hidden allosteric communication networks. Importantly, this study indicates that dynamic pocket crosstalk analysis provides new mechanistic understandings on allosteric communication networks, enriching the available experimental data. Thus, our results suggest the prospective use of this unprecedented dynamic analysis to characterize transient binding pockets for structure-based drug design.
منابع مشابه
Network Investigation and Performance Analysis of ZigBee Technology using OPNET
Abstract- Communication has become inevitably part of our day to day activities, in academic, business, banking, and other sectors. It has therefore become so important to implement good and efficient communication system. A reference point according to this research is the wireless sensor networking (WSN) system, and most important thing in communication is to be free from interference, attenu...
متن کاملBidirectional Allosteric Communication between the ATP-Binding Site and the Regulatory PIF Pocket in PDK1 Protein Kinase.
Allostery is a phenomenon observed in many proteins where binding of a macromolecular partner or a small-molecule ligand at one location leads to specific perturbations at a site not in direct contact with the region where the binding occurs. The list of proteins under allosteric regulation includes AGC protein kinases. AGC kinases have a conserved allosteric site, the phosphoinositide-dependen...
متن کاملAllosteric Communication Occurs via Networks of Tertiary and Quaternary Motions in Proteins
Allosteric proteins bind an effector molecule at one site resulting in a functional change at a second site. We hypothesize that allosteric communication in proteins relies upon networks of quaternary (collective, rigid-body) and tertiary (residue-residue contact) motions. We argue that cyclic topology of these networks is necessary for allosteric communication. An automated algorithm identifie...
متن کاملOccupational hazards: allosteric regulation of protein kinases through the nucleotide-binding pocket.
Targeting the protein kinase ATP-binding pocket provides a significant opportunity for the treatment of disease. Recent studies have revealed a central activity-independent role for nucleotide pocket occupation in the allosteric behaviour of diverse kinases. Regulation of nucleotide pocket conformation with either nucleotides or ATP competitive inhibitors has revealed an added dimension to the ...
متن کاملScalable Rule-Based Modelling of Allosteric Proteins and Biochemical Networks
Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters require...
متن کامل